Curiosity's Most Incredible Mars Snapshots of 2016
Since August 2012, NASA's Curiosity rover has been carving a path across the Martian surface, trying to understand more about the environment of the Red Planet. Where did water flow? Was it habitable? And what other geologic history took place in Gale Crater and Mount Sharp? Now that Curiosity is on the lower reaches of Mount Sharp, it has taken several spectacular images of dunes, rocks and even a meteorite. Here are some of its neatest images from the past year.
Get out your 3-D glasses and admire this 13-foot-tall dune on Mars! Called Namib Dune, it was part of a study Curiosity did on active sand dunes (meaning that the dunes migrate rapidly every year). Namib is part of the Bagnold Dunes region, which migrate up to one meter annually.
"As on Earth, the downwind side of a sand dune has a steep slope called a slip face," NASA said in a statement. "Sand grains blowing across the windward side of a dune become sheltered from the wind by the dune itself. The sand falls out of the air and builds up on the lee slope until it becomes steepened and flows in mini-avalanches down the face."
This is another view of the Bagnold Dune field with the Curiosity rover in front. While this "selfie" does look cool, it's also useful to NASA engineers who can monitor the rover's condition. One of the early concerns of the Curiosity mission, for example, was how quickly the wheels were wearing down. NASA began driving on smoother ground and has decelerated the rate of wear.
RELATED: Get Immersed in Curiosity's 360 Degree Mars Dune
The image was taken on Jan. 19, 2016, Curiosity's 1,228th Martian day of work. You don't see the arm that took the selfie because it was positioned out of the shots during the capture of the pictures taken for this mosaic.
What looks like a random assortment of rocks at Murray Buttes actually tells a bit about the long history of ancient Mars. Today the planet is dominated by wind-blown erosion, and this image shows us that these processes were also important in the distant past. Separately, Curiosity has also found evidence of watery erosion before reaching the higher areas of Mount Sharp.
"The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed," NASA said in a statement. "The layering within the sandstone is called 'cross-bedding' and indicates that the sandstone was deposited by wind as migrating sand dunes."
We can't get over how cool this is: human-made rover voyages to an alien planet, moves around a little bit and bumps into a rock that happens to be alien to the alien planet's environment. You're looking here at an iron-nickel meteorite that is about the size of a golf ball. It's nicknamed "Egg Rock" after a site in Maine. "Iron-nickel meteorites are a common class of space rocks found on Earth, and previous examples have been found on Mars, but Egg Rock is the first on Mars to be examined with a laser-firing spectrometer," NASA said in a statement.